Revealing the impact of 17 mutations of human FMO3 protein associated with trimethylaminuria on its local spatial properties: a bioinformatic approach

نویسندگان

  • TV Borodina
  • SE Vakal
چکیده

Background Trimethylaminuria (TMAU) is a rare metabolic disorder manifesting in enormous excretion of trimethylamine (TMA) with urea, sweat and breath that leads to unpleasant body odour similar to rotting fish. TMAU has a strong genetic basis: 18 mutations (associated with 17 amino acid substitutions or chain truncation) of flavincontaining monooxygenase 3 (FMO3) are now recognized as a causative factor of TMAU. Surprisingly, only few of them are related with active site structure, while the molecular basis of other mutations impact on the protein structure is unknown. Moreover, there are no FMO3 models solved experimentally. So, the aim of study was to reveal the effects of 17 known mutations on human FMO3 structure by means of structural bioinformatics techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interindividual differences of human flavin-containing monooxygenase 3: genetic polymorphisms and functional variation.

The human flavin-containing monooxygenase (form 3) (FMO3) participates in the oxygenation of nucleophilic heteroatom-containing drugs, xenobiotics, and endogenous materials. Currently, six forms of the FMO gene are known, but it is FMO3 that is the major form in adult human liver that is likely responsible for the majority of FMO-mediated metabolism. The substrate structural feature requirement...

متن کامل

Analysis of six novel flavin-containing monooxygenase 3 (FMO3) gene variants found in a Japanese population suffering from trimethylaminuria

Polymorphic human flavin-containing monooxygenase 3 (FMO3) is associated with the inherited disorder trimethylaminuria. Several FMO3 variants have been observed in a variety of ethnic groups, including a Japanese cohort suffering from trimethylaminuria. The aim of this study was to screen another self-reported Japanese trimethylaminuria cohort for novel FMO3 variants and to investigate these ne...

متن کامل

Effect of Mutation in Efflux Pump Regulatory Protein (MexR) of Pseudomonas aeruginosa: A Bioinformatic Study

ABSTRACT            Background and Objectives: Pseudomonas aeruginosa is an important non-fermenting gram-negative hospital-acquired pathogen. Treatment of P. aeruginosa infections has become more challenging due to overexpression of efflux pumps. The aim of the present study was to apply in silico analysis to evaluate the structure of the effl...

متن کامل

Population-specific polymorphisms of the human FMO3 gene: significance for detoxication.

Flavin-containing monooxygenase form 3 (FMO3) is one of the major enzyme systems that protect humans from the potentially toxic properties of drugs and chemicals. FMO3 converts nucleophilic heteroatom-containing chemicals and endogenous materials to polar metabolites, which facilitates their elimination. For example, the tertiary amine trimethylamine is N-oxygenated by human FMO3 to trimethylam...

متن کامل

Trimethylaminuria (fish-odor syndrome): a case report.

BACKGROUND Trimethylaminuria (fish-odor syndrome) is a rare metabolic disorder characterized by a body malodor similar to that of decaying fish. The condition results from mutations affecting the flavin-containing monooxygenase 3 (FMO3) gene. Affected individuals may exhibit a variety of psychosocial phenomena. A high index of suspicion for this disorder needs to be maintained when treating ind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015